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a b s t r a c t

The solution of the non-linear stochastic boundary-value problem of the creep of a thin plate in a plane
stress state when the elastic strains are small and can be neglected is presented. The plate material is
stochastically inhomogeneous so that the stress and strain tensors are random functions of the coor-
dinates. The constitutive creep relation, taken as in non-linear viscous flow theory, is formulated in a
stochastic form. Using the perturbation method, the non-linear stochastic problem is reduced to a sys-
tem of three linear partial differential equations in the fluctuations of the stress tensor and, then, changing
by implementing the stress function, to a differential equation, the solution of which is represented in
the form of the sum of two series. The first series is the solution far from the boundary of the plate,
ignoring edge effects, and the second is the solution in the boundary layer, and its terms rapidly decay as
the distance from the boundary of the plate increases. The stretching of a stochastically inhomogeneous
half-plane in the direction of two mutually orthogonal axes is considered as an example. The stress con-
centration in the boundary of the half-plane is investigated. It is shown that the spread of the stresses
in the surface layer, the width of which depends on the degree of non-linearity of the material, can be
much greater than in the deep layers.

© 2010 Elsevier Ltd. All rights reserved.

Structural inhomogeneity in a material causes the appearance of a number of mechanical effects which cannot be investigated using
classical phenomenological theories. One of these is the boundary-layer effect: close to the boundary of a body with structural inhomogene-
ity there is a boundary layer in which the stress-strain state differs from the stress-strain state of the internal regions. A stress concentration
of occurs on the a body boundary which can attain an appreciable magnitude. This effect has been investigated in detail using the theory of
stochastic functions, for linearly elastic media (see Refs 1–5 etc). Under creep conditions, the development of analytical methods for solv-
ing of stochastic boundary-value problems encounters serious difficulties, due mainly to physical and statistical non-linearities. Boundary
effects under creep conditions based on the solution of a stochastic boundary-value problem, has therefore only been investigated in the
simplest cases 6,7. A plane stochastic steady-state creep problem, ignoring the boundary effect, has been solved 8 using the eigenvalue
representation of a stochastic function; in this case, the boundary conditions were replaced by the requirement that the functions were
bounded at infinity.

1. Formulation of the problem

Suppose the components of the stress tensor satisfy the equilibrium equations

(1.1)

and the components of the strain rate tensor satisfy the condition

(1.2)

which is obtained from the strain compatibility equation by differentiation with respect to time. Here, �ij are the components of the unit
antisymmetric pseudotensor. Summation from 1 to 2 is carried out over repeated indices.
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Equations. (1.1) and (1.2) are closed by the constitutive relation, taken, as in non-linear viscous flow theory, in stochastic form 8:

(1.3)

where S is the stress intensity, �ij is the Kronecker delta, U(x1,x2) is a homogeneous stochastic function which describes the fluctuations of
the rheological properties of a material with mathematical expectation 〈U〉=0 and dispersion 〈U2〉=1, c and n are material constants and �
is the degree of inhomogeneity of the material.

Determinate surface forces qi are specified on the contour � of the domain S occupied by the plate:

(1.4)

where ni are the components of the unit vector of the normal to the contour �.
Relations (1.1)–(1.3), with boundary conditions (1.4), specify a stochastic creep problem which is approximately solved below for the

stresses.

2. Solution of the problem for a plate

Suppose the components of the stress and strain tensors are represented in the form of the sum of a determinate term and a fluctuation:

(2.1)

The tensors with the components �0
ij

and p0
ij

are assumed to be known and can be found as the solution of the corresponding determinate
steady-state creep problem.

Relation (1.3) is linearized statistically with respect to the fluctuations �∗
ij

taking account of the possibility of neglecting products of the

form �∗
ij
�∗

kl
, ˛U�∗

ij
. With the aim of physical linearization, the function sn−1, appearing in the constitutive creep relation (1.3), is expanded

in a power series and only the linear terms in this expansion are taken into account:

(2.2)

Here,

According to relations (1.3), (2.1) and (2.2), the fluctuations of the rate of strain tensor with the components p∗
ij

have the form

(2.3)

(no summation over the subscript �).
If expressions (2.3) are substituted into the compatibility equation for the strain rate fluctuations �ij�klṗ

∗
jk,il

= 0, a linear partial differ-
ential equation with variable coefficients with respect to �∗

ij
can be obtained. Since it is difficult to solve this equation, we will restrict the

treatment to the class of problems in which �0
ij

are constant quantities. The linear boundary-value problem in �∗
ij

then takes the form

(2.4)

If the stress function F for the fluctuations in the stress tensor is introduced using the formulae

(2.5)

then, instead of system of equations (2.4), we obtain a single differential equation in the function F

(2.6)
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with boundary conditions

(2.7)

Suppose the homogeneous function U(x1,x2), by using which the random field of the perturbations in the rheological properties of the
material is specified, is an almost periodic, rapidly oscillating function of the coordinates 1:

(2.8)

where � is a parameter with the dimension of inverse length, ck and dk are dimensionless quantities of the order of unity, Ak are centred
equally distributed random quantities, and �k are random quantities, uniformly distributed in the interval (0, 2�), and, moreover, all the
random quantities Ak and �k are independent.

For convenience, it is useful to change to the function of a complex variable

(2.9)

The function Ũ is introduced such that ReŨ = U.
Consider the boundary-value problem (2.6), (2.7), in which U and F are replaced by the quantities Ũ and F̃(ReF̃ = F). The solution can

be represented in the form

(2.10)

Here, �k is a special solution of Eq. (2.6) in which the function Ũ is replaced by the k-th term of expansion (2.9), and wk is the solution
of the homogeneous equation, corresponding to (2.6), which satisfies the conditions on the boundary �

(2.11)

We shall seek the function �k in the form

(2.12)

An algebraic equation is then obtained for finding fk, from which it follows that

The series
∞∑

k=1

wk defines a boundary-layer type solution which rapidly decays with depth into the body. We will construct, for example,

a solution wk of the boundary-layer type in the domain x2≥−b close to the body boundary x2=−b. Making the replacement

(2.13)

for the function gk(t), we obtain the following differential equation

(2.14)

with boundary conditions

(2.15)

A prime denotes a derivative with respect to t.
Equation (2.14) was obtained by substituting expressions (2.13) into the homogeneous equation corresponding to (2.6), and the

boundary conditions were obtained from condition (2.11) using expressions (2.12) and (2.13).
The solution of Eq. (2.14), when all the roots rk

s of the corresponding characteristic equation are simple, has the form

(2.16)

where Ck
s are arbitrary constants.
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3. Solution of the problem for a half-plane

As an example, we will consider the creep of a stochastically inhomogeneous half-plane x2≥0 under plane stress state conditions.
Suppose loads

are applied to the boundary of the half-plane x2 = 0 and the stress �11 satisfies the macroscopic homogeneity condition 〈�11〉 = �0
11 which

corresponds to the application of a load at infinity (x1→±∞).
We will construct a solution of the boundary-layer type close to the boundary of the half-plane x2≥0.
The solution of Eq. (2.14) under the conditions

(3.1)

is given by formula (2.16) and, here, the roots rk
s of the characteristic equation are given by the expressions

Of the four roots of the characteristic equation, two roots rk
3 and rk

4 have positive real parts. Since the boundary effect must decay when
x2→∞, the two constants Ck

3 and Ck
4, corresponding to these roots, are equal to zero. Boundary conditions (2.15) are used to find the other

two constants Ck
1 and Ck

2.
The solution of Eq. (2.14), of the boundary-layer type under conditions (3.1), has the form

(3.2)

Under the condition �0
11 = �0

22 = �0, there are multiple roots of the characteristic equation. The solution of this problem has been
presented earlier 6 and is not considered here.

Substituting expressions (2.12), (2.13) and (2.16) into relation (2.10), we find the stress function

Separating out the real part and introducing the notation

we obtain

(3.3)
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Table 1

n h=0 0.25 0.5 2 4 8

3 1.22 1.31 1.48 2.35 2.07 1.89
5 1.00 1.11 1.32 2.65 2.13 1.82
7 0.89 1.02 1.24 2.92 2.17 1.77
9 0.82 0.96 1.20 3.16 2.20 1.74

According to formulae (2.5), the stresses corresponding to the stress function (3.3) are given by the expressions

We will calculate the dispersions of the stochastic stress field Dij = 〈|�∗
ij
|2〉 assuming the values of ck and dk to be equal to unity. Under

these condition, the stochastic field U, defined by expansion (2.8), can be assumed to be approximately isotropic. 1 Taking account of the
conditions imposed on the stochastic quantities Ak and �k and the equality 〈U2〉=1, the dispersions of the stochastic stress field are given
by the following expressions

(3.4)

where

The results obtained enable us to analyse the main features of the effect of a boundary layer when there is creep.
According to relation (3.4), the dispersion of the stress �∗

11 on the boundary of the half plane x2 = 0 and when x2→∞ is given by the
formulae

The stress concentration on the boundary of the half-plane x2 = 0 is characterized by the coefficient of variability of the root-mean-square
deviation

Values of the coefficient of variability 	 are presented in Table 1 as a function of the degree of non-linearity of the steady-state creep n
and the loading parameter h = �0

22/�0
11; 	 = 2 for n = 1 and any h, and, also, for h = 1 and any n.
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Table 2

n �=0.05 0.1 0.2 0.5

1 5.30 10.61 21.21 53.03
3 4.52 9.04 18.09 45.23
5 4.01 8.02 16.05 40.09
7 3.64 7.28 14.56 36.38
9 3.35 6.71 13.42 33.54

Fig. 1. .

The values of the coefficient of variation d11 = (
√

D11(0)/�0
11) × 100% on the boundary of the half-plane x2 = 0 and h = 2 are presented

in Table 2 as a function of the variables � and n. It follows from Table 1 that the quantity d11 has its maximum value for this value of h (for
fixed � and n).

In the case of materials with a high non-linearity exponent (n = 9), it can be seen from Table 2 that the coefficient of variation lies in the
range from 3.35% (� = 0.05) to 33.5% (� = 0.5).

In the case of low non-linearity exponents, when the creep law can be linearized (n = 1), the scatter of the stresses �∗
11 around the mean

value is greater and, here, the value of d11 lies in the range from 5.3 to 53%.
The normalized dispersions of the stresses D0

ij
(D0

ij
= Dij(x2)/Dij(∞)) as a function of the dimensionless coordinate �x2 for n = 3 and

h = 0.5 are shown in Fig. 1. The normalized dispersions D0
12 and D0

22 on the boundary of the half plane are equal to zero and D0
11 = 2.2.

As x2 increases, the dispersions converge quite rapidly to constant values, which are identical to their values for an unbounded medium.
When �x2≥6, the relative error arising from the replacement of the normalized dispersions by unity does not exceed 5%. It can therefore
be assumed that the boundary of the edge effect zones is numerically identical to the quantity 6/�.

It was established in the investigation of the normalized dispersions for different values of the non-linearity exponent n and the loading
parameter h that, as the parameter h increases for fixed values of n, the boundary layer zone contracts. The normalized dispersion D0

11 has a
maximum value on the boundary of the half-plane, and D0

12 and D0
22 have a maximum value in the boundary layer while, when n increases

(for a fixed h), the maximum value of D0
11 decreases and D0

12 and D0
22 increase. The parameter n has no significant effect on the boundary

layer thickness. The non-monotonicity of the graphs for the stress dispersions is due to the fact that the random microinhomogeneities
are simulated using an almost periodic rapidly oscillating function of the coordinates.

Hence, the stress fluctuations in the surface layer reach values which can be significantly greater than those in the deep layers. It is clear
from this that the fluctuations in the boundary-layer stress play an important role in resolving the question of the reliability of structural
components using long-term endurance and instantaneous local stress criteria because of the variations of these stresses. The failure to take
account of boundary effects can lead to an unfounded overestimation of the fatigue life of structural components under creep conditions.
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